
Success Story | Digital Engineering 

Boosting Application Turnaround for 
A Tech Product Company

Our client is a prominent technology product company based in 

the United States that o�ers a range of products across various 

industries. Their solutions help businesses enhance their revenue 

by improving sales and marketing e�orts. One of their o�erings 

is a fully automated platform that caters to a specific industry. 

This product utilizes data mining to identify and attract business 

opportunities, manage inventory, and provide other functionalities 

through an intuitive and user-friendly interface.

The client keeps building and releasing regular feature upgrades to enhance their product. They perform manual 

as well as automation tests before releasing new versions. The client used C#, Selenium Grid, MS Test, MS Azure 

to run their automated tests in the Azure pipeline. They have followed Page Object Modal with Page factory 

design in their testing framework and maintained the codebase in the Azure repository. 

A nightly build was triggered automatically and ran all the automated tests in the QA environment in separate 

virtual machines (VM). These VMs let individuals emulate computers and run tests from di�erent operating 

systems on a single physical machine. 

The client’s automated tests often failed due to the ine�ciency of the VMs. Furthermore, the VMs also gave way 

to memory issues, high operating costs, and di�culty in maintaining and upgrading the Selenium Grid. The flaky 

nature of the client’s existing test framework caused more and more automated test failures every time. These 

issues impacted the nightly test runs, and the QA team had to restart it manually every time. 

The overall test execution time increased and led to poor performance. It also slowed down the testing team’s 

productivity as they were no longer able to di�erentiate between a test that had a bug and one that they were 

wasting their time on because of an invalid fail. The framework was also devoid of wrapper classes, and that 

led to a lack of code reusability.

How Did It All Start

reduction in test 
timing 30%

Elimination of 
VM issues 

Ability to scale 
testing to infinity 

Exploratory testing to aid 
the development team 

Parallel test execution 
through containers 

Broke-free from OS 
dependencies in testing 

The Business Outcome

What Did We Do

When the client came to TVS Next with all the issues mentioned above, we decided to investigate 
the tests that were going flaky. To identify the problem, we familiarized ourselves with the common 
reasons for flaky tests in this environment. 

We quarantined the flaky tests, fixed them, and got them to run again. We investigated the daily 
QA run in Azure, performed root cause analysis, and flagged the reason for the issues early on. 
To overcome the problems caused by VMs, we started running the automated tests in docker 
containers.

Architecture

Container Registry

Push
Code

Version
Control
System

Pull code for
Build Build

Pipeline

Pass on Build
Artefact Release

Pipeline

Bui
ld

 A
nd

 

Pus
h 

Im
age 

to
 C

ont
ain

er 

Regist
ry

Pull Im
age 

from
 C

ontainer 

Registry

Development

Test

Acceptance

The Docker platform enabled the client to isolate and securely run multiple containers on the same host 

machine. Due to the lightweight of the containers, the client was able to share them easily. Because the 

containers had everything needed, the client could run tests independent of what was installed on the host 

machine. The client can now run wholly isolated tests in Dev, Test, Acceptance, and Production environments

At TVS Next, we re-imagine, design, and develop software to enable our clients deliver di�erentiated experiences. 

To know more, email us at marketing@tvsnext.commarketing@tvsnext.com

Docker Azure Registry Google Container 
Registry 

mailto:marketing@tvsnext.com
mailto:marketing@tvsnext.com
mailto:marketing@tvsnext.com

